Chemically Strengthened Glasses


Here’s an interesting find from Glazette.com. This article claims about a new type of glass tempering, called Chemical Strengthening. It is also claimed in the article that these glasses are 6 to 8 times stronger than annealed glass, where as toughened glass is only 4 to 5 times strong. Most amazing fact is that these glasses could be cut after tempering unlike toughened glasses. However, the breakage pattern for these glasses remain almost the same as annealed glass, which obviously affects its acceptance in terms of safety.

Read the full article here.

Optical Distortion in Tempered or Toughened Glass


In my previous post on Glass Tempering or Toughening Process, I had mentioned how the process is executed and the physics involved (Refer Back). Also a brief mention how the toughened glass quality is assessed after it breaks, this is very important because safety is the reason for we spend on tempering. There are also other issues in terms of quality when glass is tempered. These are mainly optical distortion, roller marks, waviness and bend, edge strength, coating burns, fragmenting, burns, spontaneous breakage, etc.

High Optical Distortion

Quality of tempered glass mainly depends on the quality of equipments used and the quality control procedures adopted. Optical Distortion , is mainly a blurred appearance in images when seen through the glass, as well as on the reflection on the glass. This quality issue in tempered glass is common to all types of glasses. Even though minor levels of optical distortion is present in most of the tempered glasses, but it gets magnified when the quality is that poor and the glass is applied on high rise building facades. The minor level optical distortion is inherent on tempered glass, considering the fact that glass nearly reaches it’s softening point as it is heated up to a temperature of 726 degrees, and also the fact that this glass moves in rollers, therefore it is also called roller wave distortions. Such distortions could be easily identified in reflective and low-e coated glasses. Roller wave distortions could be easily controlled by adopting suitable technology and quality control procedures (use of forced convection furnaces instead of radiation furnaces). Continue reading