Low-e Coated Glass and the right usage


Here’s a short article which describes the right usage of Low-e coated glasses. Towards the last sentence of the article, it has been clearly stated that these glasses are used to prevent heat loss from the building in cold climate. But still the usage of these glasses have been mis-understood and are used in hot and humid climates, believing that they reduce the overall heat entering the building. True that they block long wave infra red radiation entering the building, just like they block them from leaving the building (which is why they are mostly used in cold climate).

Read the article on low-e coated glass here.

Insulated Glass Units

Gallery

This gallery contains 2 photos.


Insulated glass unit (IGU), also known as Double glazed unit (DGU) consists of two glass panes separated by dry air with an aluminum spacer. IGU has been in use in many countries since 1960s, except in the middle-east and Asia, … Continue reading

Is Glass Really A Green Building Material?


If somebody says that Glass is a green building material, the straight and honest answer would be a big No! Just because in many high rise green rated buildings, glass has been used extensively, it doesn’t make it a green product in itself. One might have encountered with many architects and glass industry professionals who bluntly promote glass as a green product, then why is this article contradicting that belief? Here is an explanation on why glass is not a green product by itself, but why it is essential for a green rated building. This article is in context of float glass only, which is the most widely used in buildings.

Glass could earn a few green points for the fact that it could be recycled. Broken pieces of glass are added along with the raw materials while glass is manufactured so as to bring down the boiling point and there by reduce the energy consumption. Also if the manufacturing facility is near to the building in construction, that could also fetch a few points for green rating, as the material is locally sourced. Local sourcing of material means less energy consumed for transporting the material.

Glass is extensively used in green buildings to harvest maximum light inside and to reduce energy consumption for internal lighting requirements. When more natural light enters a building, equal amount of heat also enters the building. 50% of the Visual Light Transmittance (VLT) is direct solar energy (ER or DET). So when you are asking for 100% light transmittance, you are getting 50% of heat along with it! If in a building, which is centrally air-conditioned, and if it is clear glass which is being extensively used, energy consumption for internal lighting might get reduced to a significant level, but at the same time energy consumption by the air-conditioner would be enormously escalated. This is where solar control and thermal insulating glasses play a major role.

Solar control glasses let in maximum light and also cuts DET down to a great level. Since 80 to 90% of heat entering a building is solar heat, maximum energy could be saved on lighting and air-conditioning. Apart from direct solar energy, non-solar energy or indirect energy, could also be controlled by using double glazed/ Isulated glass units(DGU / IGU), and thermal insulating glass. A DGU cuts down the heat entering a building due to conduction (glass is a good heat conductor) and convection. A thermal insulating or a low emissivity (Low-e) coated glass can reduce the non-solar heat by cutting down the transmittance of Long Wave Infra Red Radiation (LWIR). LWIR is emitted by objects like trees and furnitures during the night time, which absorb the Short Wave Infra Red Radiation (SWIR). In moderate to cold climate conditions, where heaters are used in buildings, it is better to go for a very low u-value glass, so as to prevent heat loss from the building. In tropical climates, it is better to have a moderate u-value range.

In short, it is not an isolated pane of glass that is green rated or that helps you gain green points, it is the configuration of glass units installed in your building, based on the window to wall ratio, orientation of the building, total glazing area, energy efficiency of the building, and hours of operation of the building occupants.

(Originally written for Associatedcontent.com)

Non-Solar Heat Control Glasses

Aside


Solar and Non-solar heat transfer- IGU

In the previous post, types of heat entering a building was discussed, of which solar heat comprises around 80% and the rest is non-solar heat. It becomes very important to control non-solar heat as well even though it contribute to only 20% heat entering a building, especially in buildings where there is 24 x 7 operations and households, so as to bring down the energy consumption during night time. In this post, non-solar heat and how all to control it will be discussed in detail.

Non-solar heat is mainly transferred in three ways- conduction, convection and radiation, and is measured in terms of U-value (W/m2.K). Continue reading

Solar and Heat Control Glasses

Aside


solar and non-solar heat

Glass is used in a building to harvest natural light inside it and there by reducing the internal artificial lighting requirements, in turn saving energy. The two major sources for heat entering the building is solar heat and non-solar heat; solar heat is nothing but the direct solar heat entering the building through visible light, non solar heat is caused by various factors like conduction, convection and radiation. Out of the heat sources, solar heat is the major one and requires more attention, even though the effects of non-solar heat could not be ignored as well, as it plays a major role in certain structures. Continue reading