Glass and Fire Safety


When designing a new building, we have to comply with a whole series of requirements regarding fire safety that are imposed by EU legislation. Construction materials used for partitions must meet the criteria of specific fire resistance classes, which for some architects can feel as a brake on their freedom of design. A glass partition can provide a solution here, given that even for the top fire resistance classes, a transparent solution is possible using glass.
EU legislation
EU legislation distinguishes a material’s reaction to fire and it’s resistance to fire. A material’s reaction to fire indicates how a material will respond to fire. A distinction is made between fire-resistant materials, inflammable materials and flammable materials. Materials are divided into seven Euroclasses: A1, A2, B, C, D, E and F, where A is the best classification. The following glass products are included in the list of materials that are assigned to class A1 without testing being needed: float glass, patterned glass, heat strengthened glass, thermally toughened glass, chemically toughened glass, glass with an inorganic coating, and wired glass. Continue reading

MARS Float Glass Handling Manipulator


Glass Types for Building Envelope Products


There are typically four different glass types used in glazing products: From weakest to strongest they are: Annealed, Heat Strengthened, Tempered and Laminated.

1. Annealed glass is your basic non-impact glass type. It is used in applications where the required wind load is not so high and safety requirements are not a concern. When annealed glass breaks, it breaks in sharp chards.

2. Heat Strengthened glass is also a non-impact glass. It undergoes a “heat treatment” that increases it’s strength to twice that of annealed glass. It is used in similar applications to annealed glass but where the required wind loads are much higher. When heat strengthened glass breaks, it also breaks in chards.

3. Tempered glass is your basic impact glass. It undergoes a more aggressive “treatment” that increases it’s strength to four times that of annealed glass. It is used in “small missile” impact applications typically installed 30 feet or higher above ground and in safeguard applications. When tempered glass breaks, it breaks into very small cubes.

4. Laminated glass is your typical impact glass. It is a combination of two (usually) of the three previously mentioned glass types that are “laminated” together with an interlayer between them. It is typically used in “large missile” impact applications installed up to 30 feet above ground. When laminated glass breaks, it breaks based on it’s glass type make-up but is held in place by the interlayer…similar to a car’s windshield.

By,
Rick DLG

Designing Safely With Glass

Gallery

This gallery contains 1 photo.


Here’s an interesting article by Rick De La Guardia on how to design safely with glass for today’s threats. This article was featured in US Glass Magazine. (Click on the article image to read more and download the entire edition)

Chemically Strengthened Glasses


Here’s an interesting find from Glazette.com. This article claims about a new type of glass tempering, called Chemical Strengthening. It is also claimed in the article that these glasses are 6 to 8 times stronger than annealed glass, where as toughened glass is only 4 to 5 times strong. Most amazing fact is that these glasses could be cut after tempering unlike toughened glasses. However, the breakage pattern for these glasses remain almost the same as annealed glass, which obviously affects its acceptance in terms of safety.

Read the full article here.

What is a Green Building ?

Aside


 

 

 

For all “Green-illiterates” (pardon my word usage)- A Green Building is not a green colored building, nor does it look different from any other building, then what is a green building?

A green building is basically distinguished with the approach, which involves the sincere care for the life of natural resources, providing human comfort, safety, as well as productivity. In a green building,

  • There would be minimum disturbance to the landscape and site condition.
  • Eco-friendly and recycled building materials are used.
  • Materials used are non-toxic and recyclable.
  • Equipments used are energy efficient and eco-friendly
  • Renewable energy is used

Even though the benefits of a green building are infinite, both tangible and intangible, an immediate tangible aspect could be readily observed once the green building starts operating, which is the significant reduction in operating cost and water costs (up to 40% savings !). Another tangible aspect would be the enhanced asset value. Intangible aspects would include increased productivity, health and safety, and much more.